

Abstracts

A Two- or Three-Dimensional Green's Function which can be Applied to Hyperfrequency Microelectronic Transmission Lines (Letters)

R. Crampagne and J.-L. Guiraud. "A Two- or Three-Dimensional Green's Function which can be Applied to Hyperfrequency Microelectronic Transmission Lines (Letters)." 1977 Transactions on Microwave Theory and Techniques 25.5 (May 1977 [T-MTT]): 442-444.

Knowing Green's function and the charge density found on different conductors, the diverse capacities can eventually be calculated by solving an integral equation. This has been dealt with only for simple dielectric-conductor configurations. In Coen's article, the integral representation of $\log (Z)$ is employed in calculating Green's function for microstrips (with or without an upper ground plane). Electrostatically speaking, the boundary conditions along conductors or dielectric interfaces are represented by means of infinite charge series.

[Return to main document.](#)